Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis.

نویسندگان

  • Meredith S Sagolla
  • Scott C Dawson
  • Joel J Mancuso
  • W Zacheus Cande
چکیده

In the binucleate parasite Giardia intestinalis, two diploid nuclei and essential cytoskeletal structures including eight flagella are duplicated and partitioned into two daughter cells during cell division. The mechanisms of mitosis and cytokinesis in the binucleate parasite Giardia are poorly resolved, yet have important implications for the maintenance of genetic heterozygosity. To articulate the mechanism of mitosis and the plane of cell division, we used three-dimensional deconvolution microscopy of each stage of mitosis to monitor the spatial relationships of conserved cytological markers to the mitotic spindles, the centromeres and the spindle poles. Using both light- and transmission electron microscopy, we determined that Giardia has a semi-open mitosis with two extranuclear spindles that access chromatin through polar openings in the nuclear membranes. In prophase, the nuclei migrate to the cell midline, followed by lateral chromosome segregation in anaphase. Taxol treatment results in lagging chromosomes and half-spindles. Our analysis supports a nuclear migration model of mitosis with lateral chromosome segregation in the left-right axis and cytokinesis along the longitudinal plane (perpendicular to the spindles), ensuring that each daughter inherits one copy of each parental nucleus with mirror image symmetry. Fluorescence in situ hybridization (FISH) to an episomal plasmid confirms that the nuclei remain separate and are inherited with mirror image symmetry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis.

The protozoan parasite Giardia intestinalis (also known as Giardia lamblia) is a major waterborne pathogen. During its life cycle, Giardia alternates between the actively growing trophozoite, which has two diploid nuclei with low levels of allelic heterozygosity, and the infectious cyst, which has four nuclei and a tough outer wall. Although the formation of the cyst wall has been studied exten...

متن کامل

Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex

The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either ...

متن کامل

Molecular Identification of Giardia intestinalis and Blastocystis hominis Genotypes from Fecal Samples in Khuzestan Province, Iran

Background and purpose: Giardia and Blastocystis are common parasites of humans with a wide range of hosts. The aim of this study was to identify the genotypes of Giardia intestinalis and Blastocystis hominis in individuals attending Bavi health centers in Khuzestan province, Iran. Materials and methods: In this study, 30 positive stool samples of Giardia and Blastocystis were collected from i...

متن کامل

Common Coinfections of Giardia intestinalis and Helicobacter pylori in Non-Symptomatic Ugandan Children

BACKGROUND The protozoan parasite Giardia intestinalis and the pathogenic bacterium Helicobacter pylori are well known for their high prevalences in human hosts worldwide. The prevalence of both organisms is known to peak in densely populated, low resource settings and children are infected early in life. Different Giardia genotypes/assemblages have been associated with different symptoms and H...

متن کامل

Citron kinase is a regulator of mitosis and neurogenic cytokinesis in the neocortical ventricular zone.

Successful cell division in neural progenitors in the neocortical ventricular zone (VZ), as in all dividing cells, depends critically upon coordinating chromosome segregation during mitosis with cytokinesis. This coordination further suggests that common molecular regulators may link events in mitosis with those in cytokinesis. Recent genetic evidence indicates that cytokinesis in CNS neuronal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 119 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2006